Facial recognition using deep learning
نویسندگان
چکیده
منابع مشابه
Facial Emotion Recognition using Deep Learning
Facial emotion recognition is one of the most important cognitive functions that our brain performs quite efficiently. State of the art facial emotion recognition techniques are mostly performance driven and do not consider the cognitive relevance of the model. This project is an attempt to look at the task of emotion recognition using deep belief networks which is cognitively very appealing an...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملFacial Expression Recognition in Older Adults using Deep Machine Learning
Facial Expression Recognition is still one of the challenging fields in pattern recognition and machine learning science. Despite efforts made in developing various methods for this topic, existing approaches lack generalizability and almost all studies focus on more traditional hand-crafted features extraction to characterize facial expressions. Moreover, effective classifiers to model the spa...
متن کاملFacial Expression Recognition Using Deep Belief Network
Emotional understanding and expression is a fundamental basis for human-computer interaction, and how to read the human mind through facial expression recognition technology has become a hot issue. Large dimension of image data, sample calibration difficulties, and small size training sample set make the efficient facial expression recognition task difficult. DBN (Deep Belief Network) achieves ...
متن کاملEmotion Recognition Using Multimodal Deep Learning
To enhance the performance of affective models and reduce the cost of acquiring physiological signals for real-world applications, we adopt multimodal deep learning approach to construct affective models with SEED and DEAP datasets to recognize different kinds of emotions. We demonstrate that high level representation features extracted by the Bimodal Deep AutoEncoder (BDAE) are effective for e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Informatika
سال: 2018
ISSN: 2528-6374,1978-0524
DOI: 10.26555/jifo.v12i2.a12742